organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,5-Bis[4-(diethylamino)benzylidene]-1.1-dimethyl-4-oxopiperidinium iodide: a prospective biophotonic material

Vladimir N. Nesterov,^a* Sergey S. Sarkisov,^b Michael J. Curley,^c Augustine Urbas^d and Tania Ruiz^a

^aDepartment of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA, ^bSSS Optical Technologies, LLC, 515 Sparkman Drive, Suite 122, Huntsville, AL 35816, USA, ^cDepartment of Physics, Alabama A&M University, Normal, AL 35762, USA, and ^dAir Force Research Laboratory/MLPJ, 3005 Hobson Way Building 651, Wright Patterson Air Force Base, OH 45433-7702, USA

Correspondence e-mail: vnesterov@nmhu.edu

Received 18 October 2007: accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.089; data-to-parameter ratio = 15.6.

In the title compound, $C_{29}H_{40}N_3O^+ \cdot I^-$, the heterocyclic ring in the two independent molecules exhibits a sofa conformation, with the N atom deviating from the plane through the other ring atoms. The dihedral angles between the planar part of the heterocycle and the two almost planar fragments, which include the benzene rings and bridging atoms, are 29.21 (9)/ 5.43 (8) and 21.44 (10)/25.17 (10) $^{\circ}$ in the two independent molecules. Weak intermolecular C-H···O and C-H···I contacts link the cations and anions in the crystal structure.

Related literature

For related literature, see: Dimmock et al. (2001); Nesterov et al. (2003, 2007a,b); Sarkisov et al. (2005); Allen et al. (1987); Rowland & Taylor (1996).

Experimental

Crystal data

 $C_{29}H_{40}N_3O^+ \cdot I^ M_{*} = 573.54$ Monoclinic, $P2_1/c$ a = 15.882 (3) Å b = 25.123 (4) Å c = 14.133 (3) Å $\beta = 100.882 \ (18)^{\circ}$

V = 5537.0 (18) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 1.18 \text{ mm}^{-1}$ T = 100 (2) K $0.18 \times 0.12 \times 0.08 \text{ mm}$

Data collection

```
Bruker SMART APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2003)
  T_{\min} = 0.815, T_{\max} = 0.911
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	625 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$
9746 reflections	$\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$

38649 measured reflections

 $R_{\rm int} = 0.028$

9746 independent reflections

8748 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14A - H14A \cdots O1A^{i}$ $C21A - H21A \cdots O1A^{ii}$ $C29B - H29E \cdots O1B^{iii}$ $C1A - H1AC \cdots 12^{iv}$ $C1B - H1BA - 12^{v}$	0.99 0.95 0.98 0.98	2.44 2.48 2.59 2.99	3.407 (5) 3.367 (4) 3.491 (4) 3.917 (3)	167 155 152 158
$\Box B - H B A \cdots I 2^{n}$	0.98	2.94	3.892 (3)	103

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iv) x - 1, y, z; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$. (iii) -x + 1, -v, -z + 1;

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2001); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

The authors are grateful for financial support from the DoD (grant No. W911NF-05-1-0456) and the NSF/DMR (grant No. 0420863) for the acquisition of the X-ray single-crystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2174).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bruker (2001). SAINT-Plus. Version 6.2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.
- Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007a). Acta Cryst. E63, o1785-o1787.
- Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007b). Acta Cryst. E63, o3043-o3044.
- Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, 0605-0608.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). J. Nonlinear Opt. Phys. Mater. 14, 21-40.
- Sheldrick, G. M. (2001). SHELXTL-NT. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, 04784 [doi:10.1107/S1600536807058667]

3,5-Bis[4-(diethylamino)benzylidene]-1,1-dimethyl-4-oxopiperidinium iodide: a prospective bio-photonic material

V. N. Nesterov, S. S. Sarkisov, M. J. Curley, A. Urbas and T. Ruiz

Comment

As a continuation of our work on organic compounds containing a D- π -A- π -D motif (D = donor group, A = acceptor group) with nonlinear optical two-photon absorption (TPA) properties (Sarkisov *et al.*, 2005; Nesterov *et al.*, 2007*a*,b), we report here about the structure of the title organic salt (Fig. 1). Its TPA properties and fluorescence behavior had been published earlier (Sarkisov *et al.*, 2005). Such type of compound is well known and belongs to a group that has shown anticancer activity (Dimmock *et al.*, 2001).

The central heterocycle in two independent molecules (A and B) adopts a sofa conformation: atom N1A or N1B is out of the C2A/C3A/C4A/C5A/C6A or C2B/C3B/C4B/C5B/C6B plane (planar within 0.026 (2) and 0.011 (2), respectively) by -0.685 (2) or 0.725 (2) Å, respectively. The dihedral angles between the planar part of the central ring and the two almost flat side-chain fragments that include the aromatic ring and bridging atoms (C7A···C13A and C18A···C24A in A and C7B···C13B and C18B···C24B in B) are 29.21 (9), 5.43 (8)° and 21.44 (10), 25.17 (10)° in A and B, respectively. Thus, both cations are slightly distorted from planarity. This might be partly due to the presence of short intramolecular contacts H2AB···H24A 1.93 Å and H6AB···H13A 2.09 Å in cation A and H2BA···H24B 2.10 Å, H6BA···H13B 2.09 Å and H12B···H16D 1.93 Å in cation B, that are shorter than the sum (2.2 Å) of the van der Waals radii of the H atoms (Rowland & Taylor, 1996). The cations have different orientations of the diethylamino substituents relative to the plane of the core: in A the three methyl groups are below the plane and one is above it, but in B two such groups are above and the others are below the one. Thus, it is possible to predict an existence the other polymorph modifications for the title compound with different orientations of such substituents (Nesterov *et al.*, 2003; Nesterov *et al.*, 2007*a*,b). Bond length distributions in the π -conjugated bridges and *p*-diethylaminophenyl fragments definitely show an alternation of single and double C—C bond lengths (Table 1) and are close to the standard conjugated values (Allen *et al.*, 1987).

There are weak intermolecular C—H···O and C—H···I contacts which link the cations and anions in the crystal (Fig. 2, Table 2).

Experimental

The title salt was obtained by the reaction of 3,5-bis[4-(diethylamino)benzylidene]-1-methyl-4-piperidone (Nesterov *et al.*, 2003) with CH₃I in 10 ml of ethanol. The precipitate was isolated and recrystallized from ethanol (melting point 505 K, yield 95%). Compound was characterized by ¹H and ¹³C NMR spectroscopy.

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. : The asymmetric unit if the title compound showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Fig. 2. : Projection of the crystal packing of the title compound along the c axis. Dashed lines denote intermolecular C—H···O and C—H···I contacts. The rest H atoms are omitted for clarity.

3,5-Bis[4-(diethylamino)benzylidene]-1,1-dimethyl-4-oxopiperidinium iodide

Crystal data

$C_{29}H_{40}N_{3}O^{+}\!\cdot\!I^{-}$	$F_{000} = 2368$
$M_r = 573.54$	$D_{\rm x} = 1.376 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3246 reflections
a = 15.882 (3) Å	$\theta = 3-26^{\circ}$
<i>b</i> = 25.123 (4) Å	$\mu = 1.18 \text{ mm}^{-1}$
c = 14.133 (3) Å	T = 100 (2) K
$\beta = 100.882 \ (18)^{\circ}$	Plate, red
$V = 5537.0 (18) \text{ Å}^3$	$0.18 \times 0.12 \times 0.08 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEX II CCD diffractometer	9746 independent reflections
Radiation source: fine-focus sealed tube	8748 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 100(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -18 \rightarrow 18$
$T_{\min} = 0.815, \ T_{\max} = 0.911$	$k = -29 \rightarrow 29$
38649 measured reflections	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 12.931P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.002$
9746 reflections	$\Delta \rho_{max} = 0.94 \text{ e} \text{ Å}^{-3}$
625 parameters	$\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.262883 (13)	0.210152 (8)	0.151916 (15)	0.02940 (7)
12	0.925132 (13)	0.223388 (8)	0.269180 (15)	0.02980 (7)
O1A	0.27250 (13)	0.02653 (8)	0.55043 (16)	0.0263 (5)
N1A	0.18568 (15)	0.16665 (9)	0.41795 (17)	0.0203 (5)
N2A	-0.21285 (17)	0.09166 (11)	0.6680 (2)	0.0322 (6)
N3A	0.67504 (16)	0.14195 (10)	0.3071 (2)	0.0272 (6)
C1A	0.1676 (2)	0.22418 (11)	0.3928 (2)	0.0243 (6)
H1AA	0.1922	0.2335	0.3364	0.036*
H1AB	0.1933	0.2466	0.4475	0.036*
H1AC	0.1055	0.2300	0.3783	0.036*
C2A	0.28133 (18)	0.15926 (12)	0.4367 (2)	0.0232 (6)
H2AA	0.3080	0.1854	0.4858	0.028*
H2AB	0.3029	0.1666	0.3767	0.028*
C3A	0.30808 (18)	0.10402 (11)	0.4713 (2)	0.0212 (6)
C4A	0.25282 (18)	0.07211 (11)	0.5224 (2)	0.0215 (6)
C5A	0.17140 (18)	0.09652 (11)	0.5381 (2)	0.0207 (6)
C6A	0.15162 (19)	0.15337 (11)	0.5086 (2)	0.0225 (6)
H6AA	0.1781	0.1774	0.5615	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Нелр	0.0888	0 1500	0.4068	0.027*
C7A	0.0888	0.1590	0.4903 0.5752 (2)	0.027
	0.1361	0.00901 (12)	0.5752 (2)	0.0228 (0)
C8A	0.1301	0.0293 0.07478(12)	0.5870	0.027
COA	-0.01971(19)	0.07478(12) 0.03115(12)	0.0002(2)	0.0222(0)
НОЛЛ	0.0005	-0.0035	0.5057	0.0249(0)
	-0.0003 (2)	0.0055	0.5757	0.030
	-0.1220	0.05595 (15)	0.0287 (2)	0.0282 (7)
C11A	-0.1339	0.0031	0.0308	0.034
CIIA C12A	-0.1324(2)	0.08044(12) 0.12055(12)	0.0401(2)	0.0250(0)
UI2A	-0.07684 (19)	0.13055 (12)	0.6475 (2)	0.0230 (0)
HI2A	-0.0949	0.1048	0.0042	0.031*
CI3A	0.00269 (19)	0.12486 (12)	0.6234 (2)	0.0243 (6)
HI3A	0.0376	0.1555	0.6224	0.029*
C14A	-0.2752 (2)	0.04791 (14)	0.6505 (3)	0.0345 (8)
H14A	-0.2644	0.0268	0.5949	0.041*
H14B	-0.3336	0.0631	0.6332	0.041*
C15A	-0.2716 (2)	0.01140 (15)	0.7361 (3)	0.0399 (8)
H15A	-0.3130	-0.0176	0.7191	0.060*
H15B	-0.2857	0.0316	0.7904	0.060*
H15C	-0.2137	-0.0035	0.7542	0.060*
C16A	-0.2442 (2)	0.14281 (14)	0.6965 (3)	0.0341 (8)
H16A	-0.1958	0.1626	0.7354	0.041*
H16B	-0.2871	0.1363	0.7377	0.041*
C17A	-0.2847 (3)	0.17705 (16)	0.6113 (3)	0.0450 (9)
H17A	-0.3067	0.2100	0.6348	0.068*
H17B	-0.3320	0.1575	0.5716	0.068*
H17C	-0.2416	0.1857	0.5724	0.068*
C18A	0.38354 (19)	0.08157 (12)	0.4602 (2)	0.0237 (6)
H18A	0.3904	0.0461	0.4837	0.028*
C19A	0.45540 (19)	0.10021 (12)	0.4203 (2)	0.0237 (6)
C20A	0.52267 (19)	0.06425 (12)	0.4167 (2)	0.0262 (7)
H20A	0.5173	0.0289	0.4389	0.031*
C21A	0.5956 (2)	0.07732 (12)	0.3829 (2)	0.0277 (7)
H21A	0.6397	0.0516	0.3842	0.033*
C22A	0.60573 (19)	0.12870 (12)	0.3462 (2)	0.0254 (6)
C23A	0 5394 (2)	0 16564 (12)	0 3504 (3)	0.0308(7)
H23A	0 5445	0 2009	0 3281	0.037*
C24A	0.4677 (2)	0.15174 (12)	0.3859(2)	0.0299(7)
H24A	0 4248	0.1779	0.3874	0.036*
C25A	0.7429(2)	0.10379(13)	0.3006 (3)	0.030
H25A	0.7714	0.11/3	0.2469	0.037*
H25R	0.7168	0.0683	0.240)	0.037*
C26A	0.7100	0.0085	0.2001	0.037 0.0431(0)
U26A	0.8100 (2)	0.03303 (13)	0.3922 (3)	0.0451 (9)
H26R	0.0332	0.0732	0.3033	0.005*
11200	0.7024	0.0000	0.4457	0.005*
	0.6370	0.10619 (12)	0.4008	0.000*
U27A	0.0854 (2)	0.19618 (12)	0.2/3/(2)	0.0304 (7)
П2/А	0.0305	0.2080	0.2339	0.036*
H2/B	0./291	0.1960	0.2321	0.036*

C28A	0.7122 (2)	0.23591 (13)	0.3546 (3)	0.0347 (8)
H28A	0.7172	0.2714	0.3273	0.052*
H28B	0.7678	0.2254	0.3929	0.052*
H28C	0.6691	0.2367	0.3959	0.052*
C29A	0.14350 (19)	0.13286 (12)	0.3351 (2)	0.0252 (6)
H29A	0.1663	0.1422	0.2775	0.038*
H29B	0.0815	0.1391	0.3229	0.038*
H29C	0.1551	0.0952	0.3507	0.038*
O1B	0.93706 (14)	0.48758 (9)	0.38809 (17)	0.0322 (5)
N1B	1.00050 (16)	0.34183 (10)	0.50709 (18)	0.0232 (5)
N2B	1.39888 (17)	0.38884 (10)	0.2338 (2)	0.0306 (6)
N3B	0.51465 (17)	0.35744 (11)	0.5882 (2)	0.0305 (6)
C1B	1.0143 (2)	0.28396 (12)	0.5312 (2)	0.0267 (7)
H1BA	0.9860	0.2749	0.5850	0.040*
H1BB	1.0759	0.2768	0.5495	0.040*
H1BC	0.9900	0.2624	0.4749	0.040*
C2B	0.90571 (19)	0.35101 (12)	0.4763 (2)	0.0254 (6)
H2BA	0.8763	0.3407	0.5293	0.030*
H2BB	0.8834	0.3282	0.4200	0.030*
C3B	0.88609 (19)	0.40851 (12)	0.4502 (2)	0.0242 (6)
C4B	0.94958 (19)	0.44054 (12)	0.4086 (2)	0.0254 (6)
C5B	1.02852 (19)	0.41238 (12)	0.3927 (2)	0.0242 (6)
C6B	1.04330 (19)	0.35528 (12)	0.4236 (2)	0.0237 (6)
H6BA	1.1057	0.3487	0.4424	0.028*
H6BB	1.0206	0.3317	0.3686	0.028*
C7B	1.08469 (19)	0.43981 (12)	0.3505 (2)	0.0257 (6)
H7BA	1.0697	0.4760	0.3369	0.031*
C8B	1.16393 (19)	0.42324 (12)	0.3224 (2)	0.0242 (6)
C9B	1.2215 (2)	0.46305 (12)	0.3066 (2)	0.0267 (7)
H9BA	1.2065	0.4992	0.3145	0.032*
C10B	1.2985 (2)	0.45210 (12)	0.2803 (2)	0.0266 (7)
H10B	1.3364	0.4806	0.2738	0.032*
C11B	1.3228 (2)	0.39941 (12)	0.2625 (2)	0.0261 (6)
C12B	1.26324 (19)	0.35903 (12)	0.2741 (2)	0.0248 (6)
H12B	1.2758	0.3231	0.2612	0.030*
C13B	1.1873 (2)	0.37076 (12)	0.3039 (2)	0.0250 (6)
H13B	1.1497	0.3425	0.3122	0.030*
C14B	1.4516 (2)	0.43253 (13)	0.2093 (2)	0.0307 (7)
H14C	1.4136	0.4616	0.1795	0.037*
H14D	1.4847	0.4199	0.1610	0.037*
C15B	1.5135 (2)	0.45446 (15)	0.2957 (3)	0.0408 (8)
H15D	1.5422	0.4861	0.2763	0.061*
H15E	1.5564	0.4273	0.3203	0.061*
H15F	1.4817	0.4642	0.3463	0.061*
C16B	1.4219 (2)	0.33538 (13)	0.2071 (3)	0.0360 (8)
H16C	1.4032	0.3310	0.1366	0.043*
H16D	1.3900	0.3092	0.2390	0.043*
C17B	1.5168 (2)	0.32291 (16)	0.2335 (3)	0.0482 (10)
H17D	1.5262	0.2852	0.2210	0.072*

H17E	1.5373	0.3305	0.3020	0.072*
H17F	1.5482	0.3449	0.1946	0.072*
C18B	0.81378 (19)	0.43279 (12)	0.4639 (2)	0.0252 (6)
H18B	0.8117	0.4700	0.4515	0.030*
C19B	0.73842 (19)	0.41123 (12)	0.4947 (2)	0.0258 (6)
C20B	0.6822 (2)	0.44641 (13)	0.5288 (2)	0.0281 (7)
H20B	0.6947	0.4834	0.5307	0.034*
C21B	0.6096 (2)	0.42922 (13)	0.5596 (2)	0.0297 (7)
H21B	0.5749	0.4545	0.5843	0.036*
C22B	0.5856 (2)	0.37527 (13)	0.5553 (2)	0.0272 (7)
C23B	0.6386 (2)	0.34044 (13)	0.5153 (3)	0.0323 (7)
H23B	0.6231	0.3040	0.5074	0.039*
C24B	0.7127 (2)	0.35767 (13)	0.4873 (3)	0.0313 (7)
H24B	0.7474	0.3325	0.4623	0.038*
C25B	0.4591 (2)	0.39408 (14)	0.6285 (2)	0.0328 (7)
H25C	0.4955	0.4204	0.6694	0.039*
H25D	0.4274	0.3737	0.6705	0.039*
C26B	0.3950 (2)	0.42358 (15)	0.5541 (3)	0.0435 (9)
H26D	0.3631	0.4489	0.5864	0.065*
H26E	0.3551	0.3981	0.5171	0.065*
H26F	0.4255	0.4428	0.5104	0.065*
C27B	0.4833 (2)	0.30308 (14)	0.5693 (3)	0.0399 (8)
H27C	0.4472	0.2936	0.6167	0.048*
H27D	0.5330	0.2785	0.5793	0.048*
C28B	0.4323 (3)	0.29476 (18)	0.4698 (3)	0.0563 (11)
H28D	0.4150	0.2573	0.4617	0.085*
H28E	0.4674	0.3041	0.4222	0.085*
H28F	0.3811	0.3174	0.4604	0.085*
C29B	1.0362 (2)	0.37463 (13)	0.5939 (2)	0.0285 (7)
H29D	1.0055	0.3662	0.6461	0.043*
H29E	1.0291	0.4125	0.5777	0.043*
H29F	1.0972	0.3666	0.6148	0.043*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02423 (12)	0.03144 (12)	0.03431 (13)	-0.00020 (8)	0.01009 (9)	0.00265 (8)
I2	0.02210 (12)	0.03461 (12)	0.03428 (13)	0.00125 (8)	0.00937 (9)	-0.00015 (8)
O1A	0.0246 (11)	0.0211 (11)	0.0346 (12)	0.0033 (8)	0.0096 (9)	0.0028 (9)
N1A	0.0173 (12)	0.0206 (12)	0.0236 (13)	0.0010 (9)	0.0058 (10)	0.0010 (10)
N2A	0.0226 (13)	0.0345 (15)	0.0417 (16)	-0.0011 (11)	0.0120 (12)	-0.0089 (12)
N3A	0.0203 (13)	0.0241 (13)	0.0396 (15)	0.0010 (10)	0.0114 (11)	0.0036 (11)
C1A	0.0227 (15)	0.0209 (15)	0.0304 (16)	0.0050 (12)	0.0081 (13)	0.0038 (12)
C2A	0.0160 (14)	0.0245 (15)	0.0297 (16)	0.0008 (11)	0.0055 (12)	0.0025 (12)
C3A	0.0187 (14)	0.0219 (14)	0.0234 (15)	0.0008 (11)	0.0047 (12)	-0.0010 (12)
C4A	0.0179 (14)	0.0233 (15)	0.0235 (15)	0.0025 (11)	0.0043 (12)	-0.0018 (12)
C5A	0.0222 (15)	0.0205 (14)	0.0199 (14)	0.0020 (11)	0.0054 (12)	-0.0026 (11)
C6A	0.0221 (15)	0.0225 (15)	0.0253 (15)	0.0027 (12)	0.0108 (12)	0.0010 (12)

C7A	0.0221 (15)	0.0220 (14)	0.0237(15)	0.0018(12)	0.0031(12)	-0.0025(12)
C8A	0.0221(15) 0.0204(15)	0.0220(14) 0.0258(15)	0.0207 (15)	0.0013(12) 0.0003(12)	0.0031(12) 0.0049(12)	0.0023(12) 0.0002(12)
C9A	0.0257 (16)	0.0238(15)	0.0265 (16)	-0.0003(12)	0.0019(12) 0.0080(13)	-0.0018(12)
C10A	0.0255 (16)	0.0268 (16)	0.0203(10) 0.0341(17)	-0.0039(13)	0.0000(13)	-0.0040(12)
C11A	0.0246 (16)	0.0302 (16)	0.0211(17) 0.0229(15)	0.0007 (13)	0.0069(12)	-0.0019(12)
C12A	0.0250(16)	0.0302(10)	0.0227(16)	0.0007(12)	0.0009(12) 0.0074(13)	-0.0011(12)
C13A	0.0256 (16)	0.0231(15)	0.0277(10) 0.0252(15)	-0.0014(12)	0.0081 (13)	-0.0011(12)
C14A	0.0230(17)	0.0235(15)	0.0232(19)	-0.0037(14)	0.0096 (14)	-0.0109(15)
C15A	0.0366 (19)	0.045(2)	0.0377(17)	-0.0117(16)	0.0152 (16)	-0.0109(15)
C16A	0.0285(17)	0.013(2)	0.012(2)	0.0117(10)	0.0132(10) 0.0138(15)	-0.0088(15)
C17A	0.0203(17)	0.0370(17)	0.0372(17)	0.0017(17)	0.0107(17)	-0.0040(18)
C18A	0.0225(15)	0.0226(15)	0.0259(15)	0.0014(12)	0.0107(17)	-0.0014(12)
C19A	0.0223(15)	0.0220(13)	0.0239(15)	0.0014(12)	0.0047(12)	0.0014(12)
C20A	0.0224(15)	0.0210(14)	0.0270(10) 0.0348(17)	0.0019(12)	0.0000(12)	0.0010(12) 0.0040(13)
C20A	0.0242(10)	0.0211(15)	0.0346(17)	0.0003(12)	0.0037(13)	0.0040(13)
C21A	0.0223(10)	0.0238(15)	0.0316(17)	0.0042(12)	0.0057(13)	-0.0002(13)
C22A	0.0214(15)	0.0234(15)	0.0510(17)	0.0005(12)	0.0030(15)	0.0005(12)
C23A	0.0248(10)	0.0201(13)	0.030(2)	0.0003(12)	0.0130(13)	0.0035(14)
C24A	0.0251(10)	0.0213(15)	0.043(2)	0.0034(12)	0.0120(14)	-0.00033(14)
C25A	0.0239(10)	0.0277(10)	0.043(2)	0.0000(13)	0.0138(13)	-0.0003(14)
C20A	0.0293(18)	0.0308(19)	0.002(2)	0.0044(13)	0.0049(17)	0.0130(18)
C27A	0.0273(17)	0.0200(10)	0.0390(19)	0.0000(13)	0.0129(14)	0.0042(14)
C28A	0.0321(18)	0.0300(17)	0.040(2)	-0.002/(14)	0.0189(10)	-0.0034(13)
C29A	0.0230(13)	0.0270(10)	0.0244(13)	0.0010(12)	0.0010(12)	-0.0010(12)
VID N1D	0.0300(12)	0.0249(12)	0.0428(14)	0.0029(9)	0.0101(10)	0.0034(10)
NID	0.0212(12)	0.0240(13)	0.0232(13)	-0.0021(10)	0.0003(10)	-0.0014(10)
N2D	0.0270(14)	0.0228(13)	0.0439(17)	-0.0001(11)	0.0131(12)	-0.0011(12)
N3B C1D	0.0235(14)	0.0306(14)	0.0389 (16)	0.0004 (11)	0.0103(12)	0.0000(12)
CIB	0.0201(10)	0.0240(13)	0.0313(17)	0.0042(12)	0.0105(13)	0.0048(13)
C2D	0.0191(13)	0.0278(10)	0.0290(10)	0.0014(12)	0.0030(12)	0.0007(13)
C3B C4D	0.0219(13)	0.0230(13)	0.0260(16)	0.0009(12)	0.0052(12)	-0.0010(12)
C4B	0.0230(15)	0.0277(16)	0.0255 (16)	0.0009(12)	0.0051(12)	-0.0022(12)
C5B	0.0240 (15)	0.0255 (15)	0.0229 (15)	-0.0006(12)	0.0036(12)	-0.0006(12)
C6B C7D	0.0221 (15)	0.0256 (15)	0.0256 (15)	0.0005 (12)	0.0099(12)	0.0024 (12)
C/B	0.0242(16)	0.0250(15)	0.0272(16)	-0.0007(12)	0.0046(13)	-0.0010(12)
C8B	0.0235(15)	0.0259 (15)	0.0223 (13)	0.0007 (12)	0.0019(12)	0.0017(12)
C9B	0.0276 (16)	0.0204 (15)	0.0314(17)	0.0007 (12)	0.0041 (13)	0.0016 (12)
CIUB	0.0228 (15)	0.0243 (15)	0.0335 (17)	-0.0038 (12)	0.0069 (13)	0.0002 (13)
CIIB	0.0245 (16)	0.0265 (15)	0.02//(16)	-0.0011 (12)	0.0056 (13)	0.0009 (12)
C12B	0.0255 (16)	0.0220 (15)	0.02/4 (16)	0.0002 (12)	0.0058 (13)	0.0007 (12)
CI3B	0.0267 (16)	0.0245 (15)	0.0246 (15)	-0.0042 (12)	0.0068 (13)	0.0023 (12)
CI4B	0.02/4 (1/)	0.0264 (16)	0.0406 (19)	-0.0003 (13)	0.0121 (14)	-0.0008 (14)
CI5B	0.0305 (19)	0.040 (2)	0.053 (2)	-0.0031 (15)	0.0110 (17)	-0.0077 (17)
CI6B	0.0326 (18)	0.0267 (17)	0.050 (2)	0.0021 (14)	0.0105 (16)	-0.0055 (15)
CI/B	0.041 (2)	0.040 (2)	0.06/(3)	0.0084 (17)	0.0160 (19)	-0.0013(19)
CI8B	0.0228 (15)	0.0255 (15)	0.0203 (16)	-0.0007(12)	0.0026 (12)	0.0013 (12)
CI9B	0.0211 (15)	0.0277 (16)	0.0281 (16)	0.0013 (12)	0.0038 (12)	-0.0023 (13)
C20B	0.0252 (16)	0.0243 (15)	0.0342 (17)	0.0017 (12)	0.0038 (13)	-0.0018 (13)
C21B	0.0248 (16)	0.0273 (16)	0.0374 (18)	0.0048 (13)	0.0072 (14)	-0.0049 (14)
C22B	0.0241 (16)	0.0299 (16)	0.0265 (16)	0.0028 (13)	0.0022 (13)	-0.0002 (13)

COOP	0.0271(17)	0.0251 (16)	0.046(2)	-0.0008(12)	0.0005 (15)	-0.0038 (14)
C23B	0.0271(17) 0.0237(16)	0.0231(10) 0.0278(16)	0.040(2)	0.0008(13)	0.0093(13)	-0.0038(14)
C25B	0.0237(10)	0.0278(10)	0.044(2)	0.0020(13) 0.0032(14)	0.0101(14)	0.0001(14)
C25B	0.0308(18)	0.0300(18)	0.0548(18)	0.0032(14)	0.0144(14) 0.0108(17)	0.0004(14)
C20B	0.030(2)	0.041(2) 0.0329(18)	0.055(2)	-0.0006(15)	0.0108(17) 0.0218(17)	0.0023(18)
C27B	0.0528(19)	0.0529(18)	0.059(2)	-0.013(2)	0.0218(17)	-0.029(17)
C20B	0.035(3)	0.030(2)	0.000(3)	0.013(2)	0.013(2) 0.0028(13)	-0.020(2)
C29B	0.0237 (10)	0.0559 (17)	0.0232 (10)	0.0019 (13)	0.0028 (13)	0.0000 (13)
Geometric param	neters (Å, °)					
O1A—C4A		1.232 (4)	O1B-	-C4B	1.224	(4)
N1A—C29A		1.498 (4)	N1B—	-C29B	1.498	(4)
N1A—C1A		1.503 (4)	N1B-	-C1B	1.500	(4)
N1A—C2A		1.503 (4)	N1B-	-C2B	1.504	(4)
N1A—C6A		1.520 (4)	N1B—	-C6B	1.507	(4)
N2A—C11A		1.366 (4)	N2B—	-C11B	1.371	(4)
N2A—C16A		1.461 (4)	N2B-	-C16B	1.460	(4)
N2A—C14A		1.469 (4)	N2B—	-C14B	1.461	(4)
N3A—C22A		1.362 (4)	N3B—	-C22B	1.372	(4)
N3A—C25A		1.458 (4)	N3B—	-C27B	1.461	(4)
N3A—C27A		1.461 (4)	N3B—	-C25B	1.463	(4)
C1A—H1AA		0.9800	C1B—	-H1BA	0.980	0
C1A—H1AB		0.9800	C1B—	-H1BB	0.980	0
C1A—H1AC		0.9800	C1B—	-H1BC	0.9800	
C2A—C3A		1.505 (4)	C2B—	-C3B	1.509	(4)
C2A—H2AA		0.9900	C2B—	-H2BA	0.990	0
C2A—H2AB		0.9900	C2B—	-H2BB	0.990	0
C3A—C18A		1.360 (4)	C3B—	-C18B	1.346	(4)
C3A—C4A		1.475 (4)	C3B—	-C4B	1.494	(4)
C4A—C5A		1.485 (4)	C4B—	-C5B	1.493	(4)
C5A—C7A		1.356 (4)	C5B—	-C7B	1.352	(4)
C5A—C6A		1.504 (4)	C5B—	-C6B	1.505 (4)	
С6А—Н6АА		0.9900	C6B—	-H6BA	0.9900	
C6A—H6AB		0.9900	C6B—	-H6BB	0.990	0
C7A—C8A		1.439 (4)		-C8B	1.450	(4)
C7A—H7AA		0.9500	С7В—	-H7BA	0.950	0
C8A—C9A		1.403 (4)	C8B—	-C9B	1.401	(4)
C8A—C13A		1.414 (4)	C8B—	-C13B	1.408	(4)
C9A-C10A		1.369 (4)	С9В—	-C10B	1.372	(4)
С9А—Н9АА		0.9500	C9B—	-H9BA	0.950	0
C10A—C11A		1.416 (4)	C10B-	C11B	1.414	(4)
C10A—H10A		0.9500	C10B-	-H10B	0.950	0
C11A—C12A		1.417 (4)	C11B-	C12B	1.418	(4)
C12A—C13A		1.376 (4)	C12B-	C13B	1.382	(4)
C12A—H12A		0.9500	C12B-	—H12B	0.950	0
C13A—H13A		0.9500	C13B-	-H13B	0.950	0
C14A—C15A		1.510 (5)	C14B-	C15B	1.518	(5)
C14A—H14A		0.9900	C14B-	—H14C	0.990	0
C14A—H14B		0.9900	C14B-	-H14D	0.990	0

C15A—H15A	0.9800	C15B—H15D	0.9800
C15A—H15B	0.9800	C15B—H15E	0.9800
C15A—H15C	0.9800	C15B—H15F	0.9800
C16A—C17A	1.521 (5)	C16B—C17B	1.515 (5)
C16A—H16A	0.9900	C16B—H16C	0.9900
C16A—H16B	0.9900	C16B—H16D	0.9900
C17A—H17A	0.9800	C17B—H17D	0.9800
C17A—H17B	0.9800	С17В—Н17Е	0.9800
C17A—H17C	0.9800	C17B—H17F	0.9800
C18A—C19A	1.443 (4)	C18B—C19B	1.453 (4)
C18A—H18A	0.9500	C18B—H18B	0.9500
C19A—C20A	1.407 (4)	C19B—C24B	1.405 (4)
C19A—C24A	1.409 (4)	C19B—C20B	1.405 (4)
C20A—C21A	1.374 (4)	C20B—C21B	1.376 (5)
C20A—H20A	0.9500	C20B—H20B	0.9500
C21A—C22A	1.412 (4)	C21B—C22B	1.406 (4)
C21A—H21A	0.9500	C21B—H21B	0.9500
C22A—C23A	1.414 (4)	C22B—C23B	1.405 (4)
C23A—C24A	1.373 (4)	C23B—C24B	1.379 (5)
C23A—H23A	0.9500	C23B—H23B	0.9500
C24A—H24A	0.9500	C24B—H24B	0.9500
C25A—C26A	1.518 (5)	C25B—C26B	1.512 (5)
C25A—H25A	0.9900	C25B—H25C	0.9900
C25A—H25B	0.9900	C25B—H25D	0.9900
C26A—H26A	0.9800	C26B—H26D	0.9800
C26A—H26B	0.9800	C26B—H26E	0.9800
C26A—H26C	0.9800	C26B—H26F	0.9800
C27A—C28A	1.517 (5)	C27B—C28B	1.499 (6)
C27A—H27A	0.9900	С27В—Н27С	0.9900
C27A—H27B	0.9900	C27B—H27D	0.9900
C28A—H28A	0.9800	C28B—H28D	0.9800
C28A—H28B	0.9800	C28B—H28E	0.9800
C28A—H28C	0.9800	C28B—H28F	0.9800
С29А—Н29А	0.9800	C29B—H29D	0.9800
С29А—Н29В	0.9800	С29В—Н29Е	0.9800
С29А—Н29С	0.9800	C29B—H29F	0.9800
C29A—N1A—C1A	108.8 (2)	C29B—N1B—C1B	109.3 (2)
C29A—N1A—C2A	110.8 (2)	C29B—N1B—C2B	110.8 (2)
C1A—N1A—C2A	107.6 (2)	C1B—N1B—C2B	108.0 (2)
C29A—N1A—C6A	110.9 (2)	C29B—N1B—C6B	111.2 (2)
C1A—N1A—C6A	109.1 (2)	C1B—N1B—C6B	109.1 (2)
C2A—N1A—C6A	109.4 (2)	C2B—N1B—C6B	108.3 (2)
C11A—N2A—C16A	121.4 (3)	C11B—N2B—C16B	122.1 (3)
C11A—N2A—C14A	121.3 (3)	C11B—N2B—C14B	120.1 (3)
C16A—N2A—C14A	116.8 (3)	C16B—N2B—C14B	116.6 (3)
C22A—N3A—C25A	121.9 (3)	C22B—N3B—C27B	121.1 (3)
C22A—N3A—C27A	120.5 (3)	C22B—N3B—C25B	121.4 (3)
C25A—N3A—C27A	117.6 (2)	C2/B—N3B—C25B	116.7 (3)
NIA—CIA—HIAA	109.5	NIB—CIB—HIBA	109.5

N1A—C1A—H1AB	109.5	N1B—C1B—H1BB	109.5
H1AA—C1A—H1AB	109.5	H1BA—C1B—H1BB	109.5
N1A—C1A—H1AC	109.5	N1B—C1B—H1BC	109.5
H1AA—C1A—H1AC	109.5	H1BA—C1B—H1BC	109.5
H1AB—C1A—H1AC	109.5	H1BB—C1B—H1BC	109.5
N1A—C2A—C3A	112.6 (2)	N1B—C2B—C3B	111.5 (2)
N1A—C2A—H2AA	109.1	N1B—C2B—H2BA	109.3
СЗА—С2А—Н2АА	109.1	C3B—C2B—H2BA	109.3
N1A—C2A—H2AB	109.1	N1B—C2B—H2BB	109.3
СЗА—С2А—Н2АВ	109.1	C3B—C2B—H2BB	109.3
Н2АА—С2А—Н2АВ	107.8	H2BA—C2B—H2BB	108.0
C18A—C3A—C4A	116.7 (3)	C18B—C3B—C4B	118.0 (3)
C18A—C3A—C2A	123.1 (3)	C18B—C3B—C2B	122.7 (3)
C4A—C3A—C2A	120.2 (2)	C4B—C3B—C2B	119.2 (3)
O1A—C4A—C3A	121.6 (3)	O1B—C4B—C5B	121.7 (3)
O1A—C4A—C5A	120.7 (3)	O1B—C4B—C3B	121.4 (3)
C3A—C4A—C5A	117.6 (2)	C5B—C4B—C3B	116.9 (3)
C7A—C5A—C4A	117.3 (3)	C7B—C5B—C4B	117.9 (3)
C7A—C5A—C6A	123.0 (3)	C7B—C5B—C6B	122.3 (3)
C4A—C5A—C6A	119.6 (2)	C4B—C5B—C6B	119.8 (3)
C5A—C6A—N1A	110.6 (2)	C5B—C6B—N1B	111.9 (2)
С5А—С6А—Н6АА	109.5	С5В—С6В—Н6ВА	109.2
N1A—C6A—H6AA	109.5	N1B—C6B—H6BA	109.2
С5А—С6А—Н6АВ	109.5	C5B—C6B—H6BB	109.2
N1A—C6A—H6AB	109.5	N1B—C6B—H6BB	109.2
Н6АА—С6А—Н6АВ	108.1	Н6ВА—С6В—Н6ВВ	107.9
C5A—C7A—C8A	132.7 (3)	C5B—C7B—C8B	130.8 (3)
С5А—С7А—Н7АА	113.7	С5В—С7В—Н7ВА	114.6
С8А—С7А—Н7АА	113.7	C8B—C7B—H7BA	114.6
C9A—C8A—C13A	115.8 (3)	C9B—C8B—C13B	115.9 (3)
C9A—C8A—C7A	118.4 (3)	C9B—C8B—C7B	117.7 (3)
C13A—C8A—C7A	125.8 (3)	C13B—C8B—C7B	126.4 (3)
C10A—C9A—C8A	123.3 (3)	C10B—C9B—C8B	122.8 (3)
С10А—С9А—Н9АА	118.4	C10B—C9B—H9BA	118.6
С8А—С9А—Н9АА	118.4	С8В—С9В—Н9ВА	118.6
C9A—C10A—C11A	120.8 (3)	C9B—C10B—C11B	121.5 (3)
C9A—C10A—H10A	119.6	C9B—C10B—H10B	119.2
C11A—C10A—H10A	119.6	C11B-C10B-H10B	119.2
N2A—C11A—C10A	121.1 (3)	N2B-C11B-C10B	121.3 (3)
N2A—C11A—C12A	122.2 (3)	N2B—C11B—C12B	122.7 (3)
C10A—C11A—C12A	116.7 (3)	C10B—C11B—C12B	116.0 (3)
C13A—C12A—C11A	121.4 (3)	C13B—C12B—C11B	121.5 (3)
C13A—C12A—H12A	119.3	C13B—C12B—H12B	119.3
C11A—C12A—H12A	119.3	C11B—C12B—H12B	119.3
C12A—C13A—C8A	122.0 (3)	C12B—C13B—C8B	122.2 (3)
C12A—C13A—H13A	119.0	C12B—C13B—H13B	118.9
C8A—C13A—H13A	119.0	C8B—C13B—H13B	118.9
N2A—C14A—C15A	113.4 (3)	N2B—C14B—C15B	113.3 (3)
N2A—C14A—H14A	108.9	N2B—C14B—H14C	108.9

C15A—C14A—H14A	108.9	C15B—C14B—H14C	108.9
N2A—C14A—H14B	108.9	N2B—C14B—H14D	108.9
C15A—C14A—H14B	108.9	C15B—C14B—H14D	108.9
H14A—C14A—H14B	107.7	H14CC14BH14D	107.7
C14A—C15A—H15A	109.5	C14B—C15B—H15D	109.5
C14A—C15A—H15B	109.5	C14B—C15B—H15E	109.5
H15A—C15A—H15B	109.5	H15D—C15B—H15E	109.5
C14A—C15A—H15C	109.5	C14B—C15B—H15F	109.5
H15A—C15A—H15C	109.5	H15D—C15B—H15F	109.5
H15B—C15A—H15C	109.5	H15E—C15B—H15F	109.5
N2A—C16A—C17A	113.3 (3)	N2B—C16B—C17B	114.4 (3)
N2A—C16A—H16A	108.9	N2B—C16B—H16C	108.7
C17A—C16A—H16A	108.9	C17B—C16B—H16C	108.7
N2A—C16A—H16B	108.9	N2B—C16B—H16D	108.7
C17A—C16A—H16B	108.9	C17B—C16B—H16D	108.7
H16A—C16A—H16B	107.7	H16C—C16B—H16D	107.6
C16A—C17A—H17A	109.5	C16B—C17B—H17D	109.5
C16A—C17A—H17B	109.5	C16B—C17B—H17E	109.5
H17A—C17A—H17B	109.5	H17D—C17B—H17E	109.5
C16A—C17A—H17C	109.5	C16B—C17B—H17F	109.5
H17A—C17A—H17C	109.5	H17D—C17B—H17F	109.5
H17B—C17A—H17C	109.5	H17E—C17B—H17F	109.5
C3A—C18A—C19A	133.6 (3)	C3B—C18B—C19B	130.3 (3)
C3A—C18A—H18A	113.2	C3B—C18B—H18B	114.8
C19A—C18A—H18A	113.2	C19B—C18B—H18B	114.8
C20A—C19A—C24A	114.9 (3)	C24B—C19B—C20B	115.7 (3)
C20A—C19A—C18A	117.9 (3)	C24B—C19B—C18B	125.4 (3)
C24A—C19A—C18A	127.2 (3)	C20B—C19B—C18B	118.8 (3)
C21A—C20A—C19A	123.7 (3)	C21B—C20B—C19B	122.4 (3)
C21A—C20A—H20A	118.1	C21B—C20B—H20B	118.8
C19A—C20A—H20A	118.1	C19B—C20B—H20B	118.8
C20A—C21A—C22A	120.5 (3)	C20B—C21B—C22B	121.7 (3)
C20A—C21A—H21A	119.7	C20B—C21B—H21B	119.1
C22A—C21A—H21A	119.7	C22B—C21B—H21B	119.1
N3A—C22A—C21A	121.9 (3)	N3B—C22B—C23B	121.7 (3)
N3A—C22A—C23A	121.5 (3)	N3B—C22B—C21B	122.2 (3)
C21A—C22A—C23A	116.6 (3)	C23B—C22B—C21B	116.0 (3)
C24A—C23A—C22A	121.6 (3)	C24B—C23B—C22B	121.9 (3)
C24A—C23A—H23A	119.2	C24B—C23B—H23B	119.1
C22A—C23A—H23A	119.2	C22B—C23B—H23B	119.1
C23A—C24A—C19A	122.6 (3)	C23B—C24B—C19B	122.1 (3)
C23A—C24A—H24A	118.7	C23B—C24B—H24B	118.9
C19A—C24A—H24A	118.7	C19B—C24B—H24B	118.9
N3A—C25A—C26A	113.5 (3)	N3B—C25B—C26B	114.4 (3)
N3A—C25A—H25A	108.9	N3B—C25B—H25C	108.7
C26A—C25A—H25A	108.9	C26B—C25B—H25C	108.7
N3A—C25A—H25B	108.9	N3B—C25B—H25D	108.7
C26A—C25A—H25B	108.9	C26B—C25B—H25D	108.7
H25A—C25A—H25B	107.7	H25C—C25B—H25D	107.6

C25A—C26A—H26A	109.5	C25B—C26B—H26D	109.5
C25A—C26A—H26B	109.5	C25B—C26B—H26E	109.5
H26A—C26A—H26B	109.5	H26D—C26B—H26E	109.5
С25А—С26А—Н26С	109.5	C25B—C26B—H26F	109.5
H26A—C26A—H26C	109.5	H26D—C26B—H26F	109.5
H26B—C26A—H26C	109.5	H26E—C26B—H26F	109.5
N3A—C27A—C28A	113.8 (3)	N3B—C27B—C28B	114.0 (3)
N3A—C27A—H27A	108.8	N3B—C27B—H27C	108.8
C28A—C27A—H27A	108.8	C28B—C27B—H27C	108.8
N3A—C27A—H27B	108.8	N3B—C27B—H27D	108.8
C28A—C27A—H27B	108.8	C28B—C27B—H27D	108.8
H27A—C27A—H27B	107.7	H27C—C27B—H27D	107.6
C27A—C28A—H28A	109.5	C27B—C28B—H28D	109.5
C27A—C28A—H28B	109.5	C27B—C28B—H28E	109.5
H28A—C28A—H28B	109.5	H28D—C28B—H28E	109.5
C27A—C28A—H28C	109.5	C27B—C28B—H28F	109.5
H28A—C28A—H28C	109.5	H28D—C28B—H28F	109.5
H28B—C28A—H28C	109.5	H28E—C28B—H28F	109.5
N1A—C29A—H29A	109.5	N1B—C29B—H29D	109.5
N1A—C29A—H29B	109.5	N1B—C29B—H29E	109.5
H29A—C29A—H29B	109.5	H29D—C29B—H29E	109.5
N1A—C29A—H29C	109.5	N1B—C29B—H29F	109.5
H29A—C29A—H29C	109.5	H29D—C29B—H29F	109.5
H29B—C29A—H29C	109.5	H29E—C29B—H29F	109.5
C29A—N1A—C2A—C3A	-66.2 (3)	C29B—N1B—C2B—C3B	60.5 (3)
C1A—N1A—C2A—C3A	174.9 (2)	C1B—N1B—C2B—C3B	-179.7(2)
C6A—N1A—C2A—C3A	56.5 (3)	C6B—N1B—C2B—C3B	-61.7(3)
N1A—C2A—C3A—C18A	155.5 (3)	N1B-C2B-C3B-C18B	-148.0(3)
N1A—C2A—C3A—C4A	-26.4(4)	N1B—C2B—C3B—C4B	31.0 (4)
C18A—C3A—C4A—O1A	-2.7(4)	C18B—C3B—C4B—O1B	0.5 (5)
C2A—C3A—C4A—O1A	179.0 (3)	C2B—C3B—C4B—O1B	-178.6(3)
C18A—C3A—C4A—C5A	178.1 (3)	C18B—C3B—C4B—C5B	-179.0(3)
C2A—C3A—C4A—C5A	-0.1 (4)	C2B—C3B—C4B—C5B	1.9 (4)
01A—C4A—C5A—C7A	-6.4 (4)	01B-C4B-C5B-C7B	-3.0(5)
C3A—C4A—C5A—C7A	172.7 (3)	C3B—C4B—C5B—C7B	176.6 (3)
O1A—C4A—C5A—C6A	176.2 (3)	O1B—C4B—C5B—C6B	176.9 (3)
C3A—C4A—C5A—C6A	-4.6 (4)	C3B—C4B—C5B—C6B	-3.5 (4)
C7A—C5A—C6A—N1A	-142.3 (3)	C7B—C5B—C6B—N1B	152.1 (3)
C4A—C5A—C6A—N1A	34.9 (4)	C4B—C5B—C6B—N1B	-27.8(4)
C29A—N1A—C6A—C5A	62.1 (3)	C29B—N1B—C6B—C5B	-61.9(3)
C1A—N1A—C6A—C5A	-178.0(2)	C1B—N1B—C6B—C5B	177.4 (2)
C2A—N1A—C6A—C5A	-60.5 (3)	C2B—N1B—C6B—C5B	60.1 (3)
C4A—C5A—C7A—C8A	179.4 (3)	C4B—C5B—C7B—C8B	-177.3 (3)
C6A—C5A—C7A—C8A	-3.4 (5)	C6B—C5B—C7B—C8B	2.8 (5)
C5A—C7A—C8A—C9A	159.0 (3)	C5B—C7B—C8B—C9B	-161.4 (3)
C5A—C7A—C8A—C13A	-24.0 (5)	C5B—C7B—C8B—C13B	22.4 (5)
C13A—C8A—C9A—C10A	3.8 (5)	C13B—C8B—C9B—C10B	-3.8 (5)
C7A—C8A—C9A—C10A	-178.9 (3)	C7B—C8B—C9B—C10B	179.7 (3)
C8A—C9A—C10A—C11A	-1.4 (5)	C8B—C9B—C10B—C11B	3.3 (5)

C16A—N2A—C11A—C10A	174.5 (3)	C16B-N2B-C11B-C10B	-174.6 (3)
C14A—N2A—C11A—C10A	-13.1 (5)	C14B-N2B-C11B-C10B	-7.6 (5)
C16A—N2A—C11A—C12A	-4.2 (5)	C16B—N2B—C11B—C12B	3.9 (5)
C14A—N2A—C11A—C12A	168.2 (3)	C14B—N2B—C11B—C12B	170.9 (3)
C9A—C10A—C11A—N2A	178.7 (3)	C9B-C10B-C11B-N2B	178.3 (3)
C9A—C10A—C11A—C12A	-2.5 (5)	C9B-C10B-C11B-C12B	-0.4 (5)
N2A—C11A—C12A—C13A	-177.3 (3)	N2B-C11B-C12B-C13B	179.5 (3)
C10A-C11A-C12A-C13A	3.9 (5)	C10B-C11B-C12B-C13B	-1.9 (4)
C11A—C12A—C13A—C8A	-1.5 (5)	C11B—C12B—C13B—C8B	1.3 (5)
C9A—C8A—C13A—C12A	-2.3 (4)	C9B-C8B-C13B-C12B	1.5 (4)
C7A—C8A—C13A—C12A	-179.4 (3)	C7B—C8B—C13B—C12B	177.7 (3)
C11A—N2A—C14A—C15A	90.4 (4)	C11B—N2B—C14B—C15B	87.5 (4)
C16A—N2A—C14A—C15A	-96.9 (4)	C16B—N2B—C14B—C15B	-104.7 (3)
C11A—N2A—C16A—C17A	86.9 (4)	C11B-N2B-C16B-C17B	-145.9 (3)
C14A—N2A—C16A—C17A	-85.9 (4)	C14B-N2B-C16B-C17B	46.7 (4)
C4A—C3A—C18A—C19A	-176.1 (3)	C4B—C3B—C18B—C19B	174.1 (3)
C2A—C3A—C18A—C19A	2.1 (5)	C2B-C3B-C18B-C19B	-6.8 (5)
C3A—C18A—C19A—C20A	-177.1 (3)	C3B-C18B-C19B-C24B	-22.0 (5)
C3A—C18A—C19A—C24A	4.7 (6)	C3B-C18B-C19B-C20B	162.7 (3)
C24A—C19A—C20A—C21A	0.2 (5)	C24B-C19B-C20B-C21B	4.4 (5)
C18A—C19A—C20A—C21A	-178.2 (3)	C18B—C19B—C20B—C21B	-179.8 (3)
C19A—C20A—C21A—C22A	-2.0 (5)	C19B—C20B—C21B—C22B	-2.4 (5)
C25A—N3A—C22A—C21A	0.2 (5)	C27B-N3B-C22B-C23B	-9.8 (5)
C27A—N3A—C22A—C21A	-177.2 (3)	C25B—N3B—C22B—C23B	-179.2 (3)
C25A—N3A—C22A—C23A	-178.6 (3)	C27B-N3B-C22B-C21B	170.2 (3)
C27A—N3A—C22A—C23A	3.9 (5)	C25B-N3B-C22B-C21B	0.9 (5)
C20A—C21A—C22A—N3A	-176.2 (3)	C20B-C21B-C22B-N3B	178.2 (3)
C20A—C21A—C22A—C23A	2.7 (5)	C20B-C21B-C22B-C23B	-1.7 (5)
N3A—C22A—C23A—C24A	177.2 (3)	N3B-C22B-C23B-C24B	-176.2 (3)
C21A—C22A—C23A—C24A	-1.7 (5)	C21B—C22B—C23B—C24B	3.7 (5)
C22A—C23A—C24A—C19A	0.0 (5)	C22B-C23B-C24B-C19B	-1.7 (5)
C20A—C19A—C24A—C23A	0.8 (5)	C20B—C19B—C24B—C23B	-2.4 (5)
C18A—C19A—C24A—C23A	179.1 (3)	C18B—C19B—C24B—C23B	-177.9 (3)
C22A—N3A—C25A—C26A	-83.9 (4)	C22B—N3B—C25B—C26B	80.9 (4)
C27A—N3A—C25A—C26A	93.6 (3)	C27B—N3B—C25B—C26B	-88.9 (4)
C22A—N3A—C27A—C28A	74.1 (4)	C22B—N3B—C27B—C28B	-79.0 (4)
C25A—N3A—C27A—C28A	-103.4 (3)	C25B—N3B—C27B—C28B	90.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H··· A
C14A—H14A···O1A ⁱ	0.99	2.44	3.407 (5)	167
C21A—H21A···O1A ⁱⁱ	0.95	2.48	3.367 (4)	155
C29B—H29E···O1B ⁱⁱⁱ	0.98	2.59	3.491 (4)	152
C1A—H1AC····I2 ^{iv}	0.98	2.99	3.917 (3)	158
C1B—H1BA…I2 ^v	0.98	2.94	3.892 (3)	163
~				

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z; (v) x, -y+1/2, z+1/2.

Fig. 1

9) С C b a Ge

Fig. 2